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6200 Covilhã, Portugal

E-mail: pmoniz@dfisica.ubi.pt

Received 7 January 2004
Published 14 October 2004
Online at stacks.iop.org/JPhysA/37/10445
doi:10.1088/0305-4470/37/43/030

Abstract
In this paper, we investigate phenomenologically the possible effects of D-p-
brane solitons within a quantum cosmological scenario, namely focusing on a
N = 2 supersymmetric perspective. For this purpose, we consider a flat FRW
model subject to a specific action for gravity and the dilaton. In particular,
the coupling coefficient ω is now a function of d = p + 1, the dimension
of the world volume swept by the p-brane in the physical space–time. Other
fields (such as n-form fields associated with the D-p-brane) are represented by
a perfect fluid satisfying consistent physical conditions. Subsequently, we find
the general form of the corresponding quantum states (wave function of the
universe), identifying a subset of these solutions that satisfy the requirements
of N = 2 supersymmetry. These solutions also satisfy the physical properties
of a duality transformation present in the effective action.

PACS numbers: 04.60.Kz, 11.30.Pb

1. Introduction

Recent developments in superstring theory suggest that, in the Planck-length regime, the
quantum fluctuations are very large so that the coupling may increase and consequently
the string degrees of freedom would not be the relevant ones (see e.g. discussions in [1–7]
about such issues). Instead, solitonic degrees of freedom such as D-p-branes would become
more important as the strong coupling regime becomes dominant. In particular, the quantum
fluctuations will be strongly influenced by the effects of the D-p-branes. Hence, what would
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be the effect of those new physical degrees of freedom on, say, the very early universe and in
particular from a quantum cosmological point of view?

In order to address this question, it is pertinent to stress the following. Quantum cosmology
applies the fundamental principles of quantum physics to models of the very early universe.
(For both a generic and thorough description and explanation on the many issues of quantum
cosmology, see e.g. [8].) The vast majority of research in this field has focused on the
family of spatially homogeneous cosmologies [9], where the configuration space is finite-
dimensional. The Wheeler–DeWitt equation (the operatorial representation of the Hamiltonian
constraint), corresponding to the gravitational version of the zero-energy Schrödinger equation,
determines the evolution of the wavefunction of the universe [10]. A given trajectory mapped
out by the wavefunction may be interpreted as a cosmological space–time3. Although the
analysis of a finite number of degrees of freedom is restrictive, the expectation is that the
main features of the wavefunction should be preserved in a more general analysis. However,
such a framework does not admit a conserved current with a positive-definite probability
density.

One possible resolution of this and other related difficulties in quantum cosmology is to
extend the standard quantization of the universe in a supersymmetric fashion. (For relevant
reviews based on different methods, see e.g. [12–17].) In recent years, two attractive (and
possibly related) approaches have been pursued. One approach is to begin with N = 1
supergravity [18], employing a Hamiltonian formulation [19], in four dimensions and reduce
the system to a one-dimensional model by invoking a suitable homogeneous ansatz [12–17,
20, 21]. This leads to a configuration space with N = 4 local supersymmetry. Alternatively,
one may consider a purely bosonic one-dimensional model invariant under a global symmetry
transformation. In this latter case, an N = 2 supersymmetry is induced within the configuration
space if certain conditions are satisfied [22–31].

The physical framework just indicated is designated as supersymmetric quantum
cosmology (SQC). Either N = 2 or N = 4 SQC is related to N = 2 or N = 4 supersymmetric
quantum mechanics (SQM) (see the references in [32] for a detailed presentation of the
formalism and physics of SQM), from which quite a few insights and techniques have been
imported (see section 2). SQC constitutes an interesting and rewarding research topic4

[12–17], providing the opportunity, on the one hand, to perform calculations that may be
relevant for phenomenology and, on the other, having a close connection to exciting new areas
of fundamental research such as quantum gravity, M/string theory and theoretical high energy
physics in general.

The programme of research in SQC imports some of its guidelines from supergravity
[18] using canonical methods [19]. It has been gradually enlarged, with many cosmological
scenarios extensively reported in the published literature [12–17, 20–29, 31, 33–35]. The
following properties enhace a significant motivation to conduct investigation in SQC:

• Firstly, research in SQC subscribes to the idea that treating both quantum gravity and
supersymmetry effects as dominant will bring forward an improved description of the very
early universe. This contrasts with conventional quantum cosmology [8], where quantum

3 The retrieval of a classical space–time from within the framework of a quantum universe constitutes a pertinent
problem in quantum cosmology [8]: our currently observed universe has a classical nature but it may have had a
quantum origin. Its study has received quite wide attention, namely in the context of decoherence [11]. It proposes
and explains how the universe could evolve from a quantum mechanical state, described, e.g., by a wave function,
towards a situation in terms of classical equations of motion.
4 The currently observed universe is neither quantum mechanical (see previous footnote) nor supersymmetric.
Regarding this latter aspect, it is necessary that supersymmetry is broken somehow [18] in the evolution from a
quantum-mechanical state towards a classical state. This is an important issue in SQC and some interesting recent
contributions can be found in [33, 34].
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gravity is present but not supersymmetry. In the SQC framework, we will therefore find
a larger set of variables (bosonic and fermionic) as well as additional symmetries which
increase the number of constraints, subsequently imposing a wider algebra.

• Moreover, N = 1 supergravity constitutes a natural ‘square-root’ of gravity in a Dirac-like
manner [19]: the analysis of a second-order equation of the Klein–Gordon type (i.e., the
Wheeler–DeWitt equation) could be substituted by that of a supersymmetry induced set of
first-order differential equations. This would then have profound consequences regarding
the dynamics of the wave function of the universe5.

• To be more specific, in a FRW model the canonical representation is retrieved from
the Hamiltonian formalism. We then find the Hamiltonian constraint, together with the
supersymmetry constraints. These constraints should be satisfied by the physical states.
From the form of the constraint algebra it may be sufficient that in particular models the
supersymmetry constraints are sufficient to be solved.

Within the physical context of SQC (which constitutes a variant of SQM) described
previously, we will apply it to obtain a set of quantum states associated with a specific FRW
cosmological model. This model is implemented through the following result, introduced and
discussed throughout [1–5]: within a p-brane cosmology scenario, at low energy, the effective
action from the β-function of the string world sheet is not valid. Then, in order to obtain
an adequate low energy effective theory with gravity and solitons, several frameworks have
been proposed. Herewith we will employ the phenomenological approach, based on the useful
result shown by Duff, Khuri and Lu [5] and further investigated in [1–4]: the natural metric
that couples to a p-brane is the Einstein metric multiplied by a certain power of the dilaton
field, inducing a particular Brans–Dicke action.

In this scenario, a very specific coupling ω(d) is obtained, depending on d, which is the
corresponding dimension of the world-volume swept by the p-brane solution in the physical
space–time. This overall setting represents a gas of solitonic p-branes [1–5], including a perfect
fluid matter forming fields associated with the branes and originating from the appropriate
compactification of the 10-dimensional low-energy effective theory. This determines an
arbitrary relation P = γρ for the pressure and energy densities in this FRW background
(cf [1–5] for more details). This matter content can either be present in a Ramond/Ramond
(R/R) or in a Neveu–Schwarz/Neveu–Schwarz (NS/NS) sector. In the former, the perfect
fluid content is not coupled to the dilaton, while in the latter it is.

Accordingly, the purpose of this paper is to present an investigation on D-p-brane-induced
quantum cosmology applied to a FRW geometry6, extending it towards aN =2 supersymmetric
description. In order to contextualize the corresponding physical setting of this research
work, a brief description on how N = 2 supersymmetry can be induced in some quantum
cosmologies is presented in section 2. Employing then the above-mentioned modified action
with a deformation parameter ω (now d-dependent [1–4]), we obtain in section 3 different
quantum states. In section 4 we then show that some of the quantum states satisfy, the criteria

5 It is important to remark the following. It has been shown (see [36] and other details in [12]) that the only non-
trivial admissible quantum mechanical solution, satisfying the complete set of constraints of the full theory of N = 1
supergravity, is constituted by an infinite number of fermionic modes. No solution (besides the trivial one, � = 0)
can be found for states with a finite number of fermionic modes, in particular for a pure bosonic sector. This issue has
also been discussed in [14–16]. An explicit solution consistent with this framework was presented in [37]. However,
when one considers minisuperspace models (i.e., configuration spaces that are finite dimensional), then the set of
constraints is less restrictive: a wide range of solutions with a bosonic sector of finite number of fermionic modes has
then been found [12–17, 20–29, 31, 33–35].
6 A generic and thorough analysis of these FRW quantum cosmologies, extracted in this D-p-brane phenomenological
setting, will be presented elsewhere [38].



10448 P V Moniz

of N = 2 supersymmetry7 [22–31]. Finally, we conclude the paper in section 5 with a discussion
and outlook.

2. N = 2 SQC

Let us describe briefly how quantum cosmology relates to the usual quantum mechanics and
therefore how SQC can be retrieved, relating it to an SQM context.

Suppose [8, 10] we are presented with a classical theory involving n + 2 variables qα(t),
α = 0, 1, . . . , n and �, described by an action

S[qa, �] =
∫

dt [(� − 1
2�2q̇0)δabq̇

aq̇b − W(qa)q̇0], (1)

where a, b = 1, . . . , n and a dot denotes differentiation with respect to time. This theory has
an important symmetry. If for arbitrary f (but equal to unity at the endpoints of the integration
interval) we make the transformation

� → ḟ (t)�(f(t)); qα(t) → qα(f(t)), (2)

the action remains unchanged. One can easily see this by simultaneously changing the variable
of integration t →f (t). For this reason this transformation is called a reparametrization of time.
The classical equations of motion are found by varying with respect to �, qa, q0. It is then found
that the theory has a constraint: we are not free to specify all the �, qa, q0 and their derivatives
on some initial surface and integrate forward in time. Moreover, there is not even an evolution
equation for �. Only the qa are the true degrees of freedom. The total Hamiltonian H is then
found to satisfy

H = 0. (3)

Quantum cosmology [8] is then, basically, quantum mechanics of a class of such systems
with time-dependent configuration variables, satisfying the property of time-reparametrization
invariance: t → t ′(t) (see also [10]). This implies that the system is characterized by the
Hamiltonian constraint (3). In more detail, the framework of quantum cosmology involves
a class of models, where the field equations can be expressed in the form of an Hamiltonian
system, where the Hamiltonian vanishes. The classical Hamiltonian constraint may be written
in the more compact form

H = Gabπaπb + W(qa), (4)

where qa (a = 1, 2, . . . ) are the configuration space variables, Gab = diag(−1, 1, 1, . . . ) is
the configuration space metric and W(qa) is the configuration space potential [8, 10]. By
identifying the conjugate momenta with the operators πqa = πa = −i∂/∂qa and neglecting
ambiguities that arise in the factor ordering [8] of some variables, we arrive at the Wheeler–
DeWitt equation. The quantum states (wave function of the universe) are obtained by solving
this equation

Ĥ� = 0, (5)

where Ĥ is the Hamiltonian constraint operator. It is important to emphasize that due to the
presence of Gab in the ‘kinetic’ term Gabπaπb, the Wheeler–DeWitt equation is of a hyperbolic

7 In the context of supersymmetric cosmological models with perfect fluids, the interested reader will find relevant
material in [26–28]. The important issue of factor ordering is addressed in [26, 27, 29], following a proposal for
isospectral scheme introduced in [30].
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nature (like the Klein–Gordon equation) and not in a direct correspondence to a Schrödinger-
like form.

The usual SQM is obtained from extending standard quantum physics, as thoroughly
explained throughout [32]. As far as SQC is concerned, how it can be retrieved has been
pointed in section 1. As a careful analysis shows, SQC with N = 2 supersymmetry is a
variant of N = 2 SQM with the added property of time-reparametrization invariance. This will
determine, as explained above, that the total Hamiltonian will constitute a constraint and is
equal to zero. Moreover, due to the presence of a Gabπaπb term, the corresponding differential
equation is of an hyperbolic nature, i.e., similar to the Klein–Gordon equation. This implies,
therefore, important differences that contrast with the usual SQM as described in [32], in spite
of relevant similarities (either physical or merely formal) with SQC.

The procedure for attaining a N = 2 supersymmetric extension of some cosmological
models can be summarized as follows. If the Euclidean Hamilton–Jacobi equation

Gab ∂I

∂qa

∂I

∂qb
= W(qa) (6)

admits a solution, I = I(qa), that respects the symmetry of the classical Hamiltonian
[22–28, 31], a supersymmetric extension of the system is possible. In this case, a quantum
Hamiltonian, Ĥ , may be defined by the conditions

2Ĥ = [Q, Q̄]+, Q2 = Q̄2 = 0 (7)

and

[Ĥ , Q]− = [Ĥ , Q̄]− = 0, (8)

where Q is a non-Hermitian supercharge and Q̄ is its adjoint. The functional forms of these
supercharges are

Q = ψa

(
πa + i

∂I

∂qa

)
(9)

and

Q̄ = ψ̄a

(
πa − i

∂I

∂qa

)
, (10)

respectively, where the corresponding fermionic (Grassmannian) variables are defined by

ψ̄a = θa, ψb = Gab ∂

∂θa
, (11)

ψaψb + ψbψa = 0, ψ̄aψ̄b + ψ̄bψ̄a = 0. (12)

Equations (7) and (8) represent the algebra for a N = 2 supersymmetry. In more precise
terms, the classical Hamiltonian is viewed at the quantum level as the bosonic component of
an N = 2 supersymmetric Hamiltonian. The quantum Hamiltonian subsequently has the form

H = H0 + h̄

2

∂2I

∂qa∂qb
[θa, θ̄b]+. (13)

The supersymmetric wavefunction is then annihilated by the supercharges:

Q� = 0, (14)

Q̄� = 0, (15)

and automatically satisfies the Hamiltonian constraint due to equation (7). Thus, the problem
of quantizing these cosmological models in a N = 2 supersymmetric fashion involves finding
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a solution to Hamilton–Jacobi function that respects the global symmetries of the classical
action and then solving both the supersymmetry constraints.

3. FRW quantum cosmology from D-p-branes

We take the following actions to describe FRW minisuperspaces extracted from a D-p-brane
framework, employing the framework introduced and explained throughout [1–5], where the
interested reader will find a detailed mathematical and physical description. For the R/R case
we employ

S =
∫

d4x
√−g{e−φ[R − ω(∇φ)2] + Lm} (16)

and for the NS/NS case we use

S =
∫

d4x
√−g{e−φ[R − ω(∇φ)2 + Lm]}, (17)

where

ω = −4(p − 1) − (p + 1)2

2(p − 1) − (p + 1)2
, (18)

for p = d−1. Herewith, d is the dimension of the world-volume swept by the extended object
(e.g., a particle is a 0-brane, for d = 1 and p = 0, whereas a string is a 1-brane for d = 2 and
hence p = 1). More generally, in a D-dimensional space time (in equation (18) we restrict
ourselves henceforth to D = 4) we have

ω = − (D − 1)(n − 3) − (n − 1)2

(D − 2)(n − 3) − (n − 1)2
, (19)

where n = p + 2 = d + 1 is the rank of the n-form field strength tensor associated with
the p-brane object [5]. We further assume a flat FRW geometry with a metric given by the
expression

ds2 = −N2 dt2 + e2α d�x2 (20)

and a perfect fluid matter content for Lm, satisfying ρ = ρ0e
−3(1 + γ)α. The reduced actions

are therefore (see [1–3] for a detailed retrieval of these expressions) written (with overdot
representing d/dt) as

SR/R =
∫

dt e3α−φ

[
1

N2
{−6α̇2 + 6α̇φ̇ + ωφ̇2} − N2ρ0e−3(1+γ)α+φ

]
, (21)

and

SNS/NS =
∫

dt e3α−φ

[
1

N2

{−6α̇2 + 6α̇φ̇ + ωφ̇2
} − N2ρ0e−3(1+γ)α

]
. (22)

In addition, we will employ ([1–4, 39, 40]) a new time variable dt = dτe3α−φ together
with the parameters and variables X(a, φ), Y (a, φ) for the R/R case (see [1–4] for a thorough
description of its use)

κR/R = 3(1 − γ)2(ω − ωκR/R
), (23)

µR/R = − 8

κR/R

(ω − ωµR/R
), (24)

νR/R = −2(1 − γ)(ω − ωνR/R
), (25)
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ωκR/R
= − 4 − 6γ

3(1 − γ)2
, (26)

ωµR/R
= − 3

2 , (27)

ωνR/R
= − 1

1 − γ
, (28)

−2X = 3(1 − γ)α − φ, (29)

Y = α + νR/R

κR/R

X, (30)

and for the NS/NS case

κNS = 9
4 (1 − γ)2(ω − ωκNS

), (31)

µNS = −3(2ω + 3)

κNS

, (32)

νNS = 3(1 − γ)(ω − ωνNS
), (33)

ωκNS
= 4

3

3γ − 1

(1 − γ)2
, (34)

ωνNS
= − 2

1 − γ
, (35)

−2X = 3(1 − γ)α − 2φ, (36)

Y = α + νNS

2κNS

X. (37)

From these we then write the actions (21), (22) in the same formal manner, as the following
reduced actions8 (where prime denotes d/dτ):

SR/R =
∫

dτ

[
1

N2
{3κR/RY ′2 + µR/RX′2} − N2ρe−2X

]
, (38)

and

SNS =
∫

dτ

[
1

N2
{3κNSY

′2 + µNSX
′2} − N2ρe−2X

]
. (39)

Let us now extend the cosmological framework presented in [1–4], introducing herein a
corresponding canonical Hamiltonian formulation. After a suitable variable redefinition (up
to constant factors), we obtain

εκR/R
π2

Y + εµR/R
π2

X + 4ρ0e−2X/m
1/2
R/R = 0, (40)

8 See [1–4] for additional details about these computational steps.
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and

εκNS
π2

Y + εµNS
π2

X + 4ρ0e−2X/m
1/2
NS = 0. (41)

In obtaining the above Hamiltonian expressions we used the following procedure. For the R/R

case, e.g., we re-write 3κR/RY
′2 ≡ Y

′ 2 and put κR/R = |κR/R|εκR/R
≡ kR/RεκR/R

, where kR/R > 0
and εκR/R

≡ sign κR/R. Then we drop the ‘hat-bar’ over all the variables. Accordingly, we have
then used the following notations:

κR/R = kR/RεκR/R
, εκR/R

≡ sign κR/R = ±1,

κNS = kNSεκNS
, εκNS

≡ sign κNS = ±1,

µR/R = mR/RεµR/R
, εµR/R

≡ sign µR/R = ±1,

µNS = mNSεµNS
, εµNS

≡ sign µNS = ±1.

(42)

The corresponding Wheeler–DeWitt equations are thus

−εκR/R

∂2�R/R

∂Y 2
− εµR/R

∂2�R/R

∂X2
+ 4ρ0 e−2X/m

1/2
R/R�R/R = 0, (43)

and

−εκNS

∂2�NS

∂Y 2
− εµNS

∂2�NS

∂X2
+ 4ρ0 e−2X/m

1/2
NS �NS = 0. (44)

Let us address the issue of solving the above equations (43), (44). As far as the most
general spectrum of states is concerned, one important aspect to take into consideration is to
determine the regions in the (γ , ω) space where κR/R, κNS, µR/R, and µNS are positive, zero
or negative, i.e., where εκR/R

, εκNS
, εµR/R

and εµNS
are +1, −1 or zero. This will be of relevance

when we take ρ0 > 0 or ρ0 < 0. In order to solve the Wheeler–DeWitt equations, we then
re-write both in a common formal expression as[

−s1
∂2

∂y2
− s2

∂2

∂x2
+ 4ρ0e−2x/M

]
� = 0, (45)

where s1 ≡ εκR/R
or εκNS

, s2 ≡ εµR/R
or εµNS

and M ≡ √
mR/R or

√
mNS , y ≡Y , x ≡X. Equation

(45) is in a mathematical form that includes those previously used in many other publications
dealing with quantum cosmological models retrieved from superstring theory (see e.g. [24, 25,
31, 39–42]). We follow very closely herein the procedures indicated and thoroughly described
in those publications (see also [23, 26–29]). We take the following ansatz for the wave function

� = χ(x)ξ(y), (46)

and the solutions will take the form

ξ(y) =
{

e±iEy if s1 = 1,
e±Ey if s1 = −1,

(47)

where E is a separation constant. Henceforth, we choose the physical sector where ρ0 > 0 and
the corresponding admissible values of s2. Subsequently, the solutions physically interesting
for χ(x) are as follows:

• If s2 = −1, then following the framework and indications pointed out in [24, 25, 31, 39–42]
and employing also [43–45], we have a linear combination of Bessel functions of the first
and second kind of order ±iEM with argument z = 2

√
ρ0Me−x/M .
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• If s2 = 1, then we have a linear combination of Bessel functions of the first and second kind
of order ±EM with argument z = 2i

√
ρ0Me−x/M .

4. N = 2 supersymmetry in a D-p-brane FRW quantum cosmology

Within models induced by string theory, an important feature is that some are characterized by
a classical global symmetry that leaves the Lagrangian and Hamiltonian invariant. The four-
dimensional Brans–Dicke theory is relevant to the early universe and arises as the effective
action of higher-dimensional gravity theories, in particular 10-dimensional superstring theory
(see [41] for a broader explanation). The spatially flat and isotropic Brans–Dicke cosmology
exhibits then a discrete ‘scale factor duality’. This symmetry forms the basis of the pre-big
bang inflationary scenario [46, 47] and its origin can be traced to the T-duality of string theory.
The consequences of scale factor duality for string quantum cosmology have been explored
by a number of authors [46]. In particular, it has been pointed that the duality could be related
to a ‘hidden’ supersymmetry [24, 25].

This is an important aspect to investigate within our above quantum cosmological model.
In the variables X, Y , we have the following duality for the scenario induced by D-p-branes
degrees of freedom

X = X, Y = −Y , (48)

which translates as, in the (α, φ) coordinates, respectively for the R/R and NS case,

α =
[
−1 − 6(γ − 1)

νR/R

2κR/R

]
α − νR/R

κR/R

φ, (49)

φ = 6(γ − 1)

[
1 + 3(γ − 1)

νR/R

2κR/R

]
α −

[
1 + 3(γ − 1)

νR/R

κR/R

]
φ, (50)

and

α = −
[

1 + 3

2
(γ − 1)

νNS

κNS

]
α − νNS

κNS

φ, (51)

φ = 3

2
(γ − 1)

[
2 + 3

2
(γ − 1)

νNS

2κNS

]
α +

[
1 + 3

2
(γ − 1)

νNS

κNS

]
φ, (52)

with

νR/R

κR/R

= 2

3

ω(1 − γ) + 1

ω(1 − γ)2 + (4 − 6γ)/3
, (53)

νNS

κNS

= ω(1 − γ) + 2
3
4ω(1 − γ)2 − (3γ − 1)

. (54)

In the presence of this duality one may check for wave function solutions with N = 2
SUSY quantum cosmology (i.e., according to [22–25, 31]; see also [26–29, 33, 34]). Basically,
one needs to consider from the Wheeler–DeWitt equation

[
−s1

∂2

∂y2
− s2

∂2

∂x2
+ 4ρoe−2x/M

]
� = 0 (55)
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the corresponding Euclidean Hamilton–Jacobi equation

Gab = ∂I

∂qa

∂I

∂qb
= W(qa), (56)

with

Gab ≡ (s1, s2); qa = (y, x) = (q0, q1) (57)

and

W = 4ρ0e−2x/M = W(x), (58)

i.e.,

s1

(
∂I

∂y

)2

+ s2

(
∂I

∂x

)2

= W(x) = 4ρ0e−2x/M. (59)

Following an explanatory context similar to the previous section, let us also mention that
equation (59) is formally such that it includes expressions previously used in previous papers
addressing supersymmetric quantum cosmologies (see e.g. [24, 25, 31, 41]). Herein, we will
employ very closely the procedures used and described in those references. We hence seek
solutions to the above equation. One possibility is

I = J(x) + Ay. (60)

Following the steps described in detail in [24, 25, 31], we find that it reduces to

s2

(
dJ

dx

)2

= 4ρ0e−2x/M − s1A
2. (61)

A general set of solutions for equation (61) (and hence equation (59)) will be determined by
the choices of whether s1 and/or s2 are ±1 or zero, together with choosing ρ0 > 0 or ρ0 < 0
(and so whether W (x) = 4ρ0e

−2x/M is positive, negative or zero). An analysis can be made
according to four situations:

• Case 1: s2 = 1, s1 = 1;
• Case 2: s2 = −1, s1 = 1;
• Case 3: s2 = −1, s1 = −1;
• Case 4: s2 = 1, s1 = −1.

In each it can be investigated what the values/sign of ρ0 and the term 4ρ0e
−2x/M−s1A

2

determine.
Nevertheless, we employ the same line as in the previous section and restrict ourselves

to the sector ρ0 > 0, thus considering the set of solutions with physical significance. The
solutions for J(x) do exist (see [24, 25, 31, 41] and [43–45]) and satisfy the duality properties
(49)–(52) above. Thus, we can have a N = 2 supersymmetric extension for our model. Let us
take the case A = 0 for simplicity where we obtain9

s2

(
dJ

dx

)2

= 4ρ0 e−2x/M , (62)

determining s2 = 1 for ρ0 > 0 . The solutions are

J = ∓2
√

ρ0M e−x/M. (63)

9 Equation (62) includes others previously used (see e.g. [24, 25, 31, 41]) regarding the use of the Euclidean Hamilton–
Jacobi equation in SQC. We follow the steps introduced therein.
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Following the method outlined in references such as [22–29, 31] we can establish the N = 2
SUSY constraints as follows:

Q = ψa

(
πa + i

∂I

∂qa

)
, (64)

Q = ψa

(
πa − i

∂I

∂qa

)
, (65)

with ψa ≡ θa, ψb ≡ Gab ∂/∂θa being Grassmanian variables and satisfying the ansatz for the
N = 2 SUSY wave function of the universe as (see e.g. [22–29, 31])

�N=2 ≡ A+(qa) + Ba(q
a)θa + A−(qa)θ1θ2, (66)

with Baθ
a = B1θ

1 + B2θ
2. Now we apply

Q�N=2 = 0, (67)

Q�N=2 = 0, (68)

to get a set of first-order partial differential equations, whose solutions include

A+ ∼ ef , (69)

A− ∼ e−f , (70)

f ≡ ±2
√

ρ0M e−x/M = J. (71)

Moreover, the terms B1 and B2 satisfy the Laplace equation (see [22–29, 31] for details or
discussions on these components of the wave function).

5. Discussion and outlook

The possible effects of D-p-brane solitons within a quantum cosmological scenario were
investigated from a phenomenological perspective and within a N = 2 supersymmetric point
of view. The motivations were the framework and results outlined in [1–4]. As a consequence,
we employed the flat FRW model introduced in those publications, which was described by a
specific action for gravity and the dilaton. The details of the computational steps can be found
in [1–4] (see also [39–42, 46, 47] for additional elements and physical context). In particular,
the coupling coefficient ω was taken to be a function of d = p + 1, the dimension of the
world volume swept by the p-brane in the physical space–time. In this paper, after obtaining
the corresponding Hamiltonian, we retrieved the general form of the corresponding quantum
physical states (wave function of the universe), identifying a subset of these solutions that
satisfy the requirements of N = 2 supersymmetry.

Two pertinent issues regarding the approach and method employed herewith ought to be
mentioned.

Firstly, we point out that it may not be justified to quantize an effective theory with
actions (21) and (22) (arising from a fundamental quantum theory as superstring or M-theory).
However, in so far as new fundamental fields and effects arising from the fundamental theory,
a quantization of the effective action could capture significant and relevant novel features.

Secondly, it is interesting to compare the wavefunction for the empty fermion sector with
the general solution to the bosonic Wheeler–DeWitt equation. A class of solutions of the latter
include a linear combination

� = c1I0(f ) + c2K0(f ), (72)
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where I0 and K0 are Bessel functions of the first and second kind respectively with order
zero, f satisfies the Hamilton–Jacobi equation and ci are arbitrary constants. In the large
argument limit, the Bessel function of the first kind asymptotes to the form I0 ∝ f−1/2exp(f )
and, consequently, there is a correlation, up to a negligible prefactor, with the fully bosonic
component A + of the supersymmetric wavefunction (see (66) and section 4).

Let us conclude this paper by raising an important aspect in the physical context of SQC
(and therefore SQM). N = 2 induced SQC, extracted within superstring theories (bearing
scale-factor dualities), holds pertinent similarities in comparison with configuration spaces
retrieved from N = 1 quantum supergravity. However, there are delicate structural differences.
Although both have a canonical structure with an Hamiltonian constraint set to zero (and
inducing a bosonic quantum mechanical hyperbolic differential equation), the latter leads to
N = 4 supersymmetric configuration spaces, but the former seems to induce N = 2 SUSY
exclusively. A clear relation between these two descriptions in SQC (that constitute particular
variants of SQM) is yet an open issue for future investigation, that could bring about novel
insights concerning a quantum mechanical description of the very early universe in the presence
of supersymmetry.
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